3 Tentukan sistem pertidaksamaan linear untuk daerah yang diarsir pada bidang koordinat cartesius berikut ini. a. b. c. x 7 y 4 3 -1 y -2 -1 -5 4 6 x 3 5 y x 1 Tes Pemahaman Tes Pemahaman 1.1 Kerjakanlah soal-soal berikut di buku latihan Anda. Program Linear 11 d. e. 4. Buatlah 2 contoh sistem pertidaksamaan linear dua variabel. Daerahhimpunan penyelesaian (DHp) adalah daerah yang memuat titik-titik yang seluruhnya memenuhi pertidaksamaan tersebut. Penentuan apakah daerah himpunan penyelesaian yang diarsir atau daerah diluar himpunan penyelesaian yang diarsir tergantung daerah dimana DHp diletakkan bukan pada daerah diarsir atau tidak diarsir. Daripenyelidikan tersebut, maka daerah yang memenuhi pertidaksamaan adalah daerah di sebelah kiri garis yang ditunjukkan gambar 2.10. Menyelesaikan Sistem Pertidaksamaan Linear dengan Dua Variabel; Gabungan dari dua atau lebih pertidaksamaan linear dua peubah disebut system pertidaksamaan linear dengan dua peubah. Metodesemacam ini lazim digunakan pada pembelajaran matematika di kelas, dan diharapkan kita juga mampu menyelesaikannya dengan cara ini. Untuk bagaimana cara menentukan daerah sistem pertidaksamaan linear secara manual, kita dapat mempelajari buku-buku yang membahas hal tersebut atau mencari informasinya di internet yang mana hal tersebut sudah sangat banyak tersedia. 76 Daerah yang memenuhi sistem pertidaksamaan linear dua variabel 5 Gambar 1.5 : Memperlihatkan Daerah hitam yang memenuhi pertidaksamaan linear dua variabel 5x + 4y ≤ 20 7x + 2y ≤14 x≥ 0 y≥0 4 3 2 1 0 3 1 7x + 2y = 14 4 2 5 6 7 5x + 4y = 20 x Gambar 1.5 : Bentuk Pertidaksamaan Linear Dua Variabel 6 Mahir Matematika untuk Kelas XII Dalammatematika, daerah layak program linier adalah daerah penyelesaian sistem pertidaksamaan yang menjadi kendala dalam masalah program linier. ADVERTISEMENT Menyelesaikan masalah program linier atau program linear pada dasarnya adalah mencari titik yang membuat fungsi objektif (fungsi tujuan) mencapai nilai optimum dan memenuhi semua kendalanya. rIiw. Pembahasan soal Ujian Nasional UN SMA-IPA bidang studi Matematika dengan materi pembahasan Sistem Pertidaksamaan Linear yang meliputi daerah sistem pertidaksamaan linear dan model matematika sistem pertidaksamaan linear. Konsep 1 Untuk menentukan persamaan garis dari suatu grafik, gunakan konsep berikut ini! Konsep 2 Untuk menentukan daerah pertidaksamaan, gunakan konsep berikut ini! Soal No. 1 tentang Daerah Sistem Pertidaksamaan Linear Perhatikan gambar berikut! Daerah yang memenuhi sistem pertidaksamaan linear x + y ≤ 4; x + 4y ≥ 8, x ≥ 0, y ≥ 0 adalah …. Berdasarkan konsep pengerjaan soal nomor 2 maka Pertidaksamaan 1 adalah x + y ≤ 4. Karena tanda pertidaksamaannya “≤” maka daerah yang diarsir berada di bawah garis arsiran biru. Sedangkan pertidaksamaan 2 adalah x + 4y ≥ 8. Karena tanda pertidaksamaannya “≥” maka daerah yang diarsir berada di atas garis arsiran merah. Sementara itu, arsiran warna coklat merupakan irisan pertidaksamaan 1 dan 2 di kuadran I x ≥ 0, y ≥ 0. Jadi, daerah yang memenuhi sistem pertidaksamaan linear adalah daerah II B. Soal No. 2 tentang Daerah Sistem Pertidaksamaan Linear Daerah yang memenuhi sistem pertidaksamaan linear 3x + 4y ≤ 96; x + y ≤ 30; x ≥ 0; y ≥ 0 adalah …. Pembahasan Kedua pertidaksamaan di atas bertanda “≤” sehingga dapat dipastikan daerah pertidaksamaan keduanya berada di bawah garis. Sementara itu, sistem pertidaksamaan tersebut berada di kuadran pertama x ≥ 0, y ≥ 0. Jadi, daerah yang memenuhi sistem pertidaksamaan linear tersebut adalah daerah IV D. Soal No. 3 tentang Model Matematika Sistem Pertidaksamaan Linear Daerah yang diarsir pada gambar di bawah ini adalah daerah himpunan penyelesaian semua x, y yang memenuhi sistem pertidaksamaan …. + y ≤ 4, 2x + 5y ≥ 10, y ≥ 0 + y ≤ 4, 2x + 5y ≤ 10, y ≥ 0 + y ≤ 4, 2x + 5y ≥ 10, x ≥ 0 + y ≥ 4, 2x + 5y ≥ 10, x ≥ 0 + y ≥ 4, 2x + 5y ≤ 10, x ≥ 0 Pembahasan Perhatikan gambar berikut ini! Daerah arsiran pada grafik di atas dibatasi oleh garis 1, garis 2, dan garis 3. Garis 1 dan daerah arsiran di bawahnya 4x + 4y ≤ 16 x + y ≤ 4 Garis 2 dan daerah arsiran di atasnya 2x + 5y ≥ 10 Garis 3 atau garis x = 0 sumbu y dan daerah di sebelah kanannya x ≥ 0 Jadi, daerah himpunan penyelesaian semua x, y yang memenuhi sistem pertidaksamaan opsi C. Soal No. 4 tentang Model Matematika Sistem Pertidaksamaan Linear Daerah yang diarsir pada gambar di bawah ini adalah daerah penyelesaian dari pertidaksamaan …. + y ≤ 12; 5x + 4y ≥ 20; x ≥ 0; y ≥ 0 + y ≥ 12; 5x + 4y ≥ 20; x ≥ 0; y ≥ 0 + y ≥ 12; 5x + 4y ≤ 20; x ≥ 0; y ≥ 0 + y ≥ 12; 5x + 4y ≤ 20; x ≥ 0; y ≥ 0 + 6y ≤ 12; 4x + 5y ≥ 20; x ≥ 0; y ≥ 0 Pembahasan Perhatikan grafik di bawah ini! 1 12x + 2y = 24 2 5x + 4y = 20 Persamaan garis 1 perlu disederhanakan, sedangkan persamaan 2 sudah dalam bentuk yang paling sederhana. Sehingga, 1 6x + y = 12 2 5x + 4y = 20 Daerah yang diarsir terletak di sebelah kiri garis 1 dan di atas garis 2. Tanda pertidaksamaan untuk daerah sebelah kiri adalah “≤” sedangkan daerah atas adalah “≥” . Diperoleh 1 6x + y ≤ 12 2 5x + 4y ≥ 20 Daerah arsiran tersebut terletak pada kuadran I sehingga semua x dan y bernilai positif. x ≥ 0; y ≥ 0 Jadi, daerah yang merupakan daerah penyelesaian dari sistem pertidaksamaan di atas adalah opsi A. Soal No. 5 tentang Model Matematika Sistem Pertidaksamaan Linear Perhatikan gambar berikut! Daerah yang diarsir pada gambar di atas merupakan daerah penyelesaian dari sistem pertidaksamaan …. + 2y ≥ 8; 2x + 3y ≥12; x ≥ 0; y ≥ 0 + y ≥ 8; 3x + 2y ≥ 12; x ≥ 0; y ≥ 0 + y ≤ 8; 2x + 3y ≤ 12; x ≥ 0; y ≥ 0 + y ≤ 8; 3x + 2y ≤ 12; x ≥ 0; y ≥ 0 + 2y ≤ 8; 2x + 3y ≤ 12; x ≥ 0; y ≥ 0 Pembahasan Perhatikan gambar berikut ini! 1 8x + 4y = 32 2 4x + 6y = 24 Jika kedua persamaan di atas disederhanakan maka akan menjadi 1 2x + y = 8 2 2x + 3y = 12 Daerah yang diarsir terletak di bawah garis 1 dan di bawah garis 2 sehingga tanda pertidaksamaannya adalah “≤” kurang dari atau sama dengan. 1 2x + y ≤ 8 2 2x + 3y ≤ 12 Daerah arsiran tersebut terletak pada kuadran I sehingga semua x dan y bernilai positif. x ≥ 0; y ≥ 0 Jadi, daerah yang merupakan daerah penyelesaian dari sistem pertidaksamaan di atas adalah opsi C. Simak juga Pembahasan Matematika IPA UN Sistem Persamaan Linear Pembahasan Matematika IPA UN Program Linear Dapatkan pembahasan soal dalam file pdf di sini. Demikian, berbagi pengetahuan bersama Kak Ajaz. Silakan bertanya di kolom komentar apabila ada pembahasan yang kurang jelas. Semoga berkah. Hai Quipperian, tahukah kamu jika tidak semua masalah matematis bisa diselesaikan dengan sistem persamaan, lho. Ada kalanya, permasalahan itu harus diselesaikan dengan pertidaksamaan. Terlebih lagi untuk hal-hal yang berkaitan dengan estimasi atau perkiraan. Sebagai contoh, kamu ingin membeli 2 bungkus makanan A dan 3 bungkus makanan B. Sementara uang yang kamu bawa hanya Nah estimasi harga setiap makanan yang akan kamu beli itu bisa ditentukan dengan pertidaksamaan lho. Oleh karena jenis makanannya ada dua, maka pertidaksamaan yang bisa digunakan adalah pertidaksamaan linear dua variabel. Lalu, apa yang dimaksud pertidaksamaan linear dua variabel? Yuk, simak selengkapnya! Pengertian Pertidaksamaan Linear Dua Variabel Pertidaksamaan linear dua variabel adalah pertidaksamaan linear yang memuat dua variabel, yaitu x dan y. Mengapa disebut pertidaksamaan linear? Karena pertidaksamaan ini menghasilkan grafik penyelesaian berupa garis lurus linear. Oleh karena suatu pertidaksamaan, maka akan berlaku tanda “”, “≤”, atau “≥”. Contoh pertidaksamaan linear dua variabel adalah sebagai berikut. Jika pada persamaan linear akan dihasilkan satu nilai tertentu, maka tidak demikian dengan pertidaksamaan. Solusi pertidaksamaan ditentukan melalui daerah penyelesaian pada grafik pertidaksamaan, sehingga memungkinkan adanya lebih dari satu penyelesaian. Bentuk Pertidaksamaan Linear Dua Variabel Pertidaksamaan linear dua variabel memiliki bentuk umum seperti berikut. ax + by ≤c tanda pertidaksamaannya bisa berupa “”, “≤”, atau “≥” Dengan a = koefisien x; b = koefisien y; dan c = konstanta. Perhatikan contoh pertidaksamaan linear berikut. x + 6y ≤ 24 Arti dari pertidaksamaan di atas adalah penjumlahan antara x dan 6y harus menghasilkan nilai paling besar 24 atau lebih kecil dari itu. Daerah Penyelesaian Pertidaksamaan Linear Dua Variabel Pada pembahasan di atas telah disinggung bahwa setiap pertidaksamaan pasti memiliki daerah penyelesaian yang memungkinkan lebih dari satu solusi penyelesaian. Lalu, bagaimana cara menentukan daerah penyelesaian? Daripada penasaran, yuk ikuti langkah-langkah berikut. Kamu gambarkan dulu garis persamaan linearnya. Caranya dengan mengubah tanda pertidaksamaan menjadi persamaan atau “=”. Misalnya untuk menggambarkan grafik 2x + 3y ” dibatasi oleh garis putus-putus. Untuk lebih jelasnya, perhatikan contoh berikut. Tentukan daerah penyelesaian dari pertidaksamaan 2x + y ≤ 4! Pembahasan Langkah pertama, gambarkan dahulu garis dari 2x + y = 4 pada koordinat Cartesius. Untuk menggambarkannya, tentukan nilai x saat y = 0 dan nilai y saat x = 0 seperti berikut. xyKoordinat040, 4202, 0 Substitusikan koordinat 0, 4 dan 2, 0 pada koordinat Cartesius seperti berikut. Langkah kedua, yaitu melakukan pengujian salah satu titik di luar garis. Untuk memudahkanmu, ambillah titik 0, 0, sehingga diperoleh 2x + y < 4 0 + 0 < 4 0 < 4 memenuhi Dengan demikian, daerah penyelesaiannya adalah daerah yang memuat koordinat 0, 0. Langkah ketiga, arsirlah daerah penyelesaiannya. Oleh karena memuat tanda “≤”, maka arsiran mengenai garis seperti berikut. Jadi, daerah penyelesaiannya adalah daerah di bawah garis sampai batas garisnya. Sistem Pertidaksamaan Linear Dua Variabel Sistem pertidaksamaan linear dua variabel adalah sistem yang memuat beberapa pertidaksamaan linear dua variabel. Sistem pertidaksamaan ini menghasilkan satu daerah penyelesaian yang dibatasi oleh garis-garis setiap persamaan linearnya. Artinya, daerah penyelesaian harus memenuhi semua pertidaksamaan yang ada. Perhatikan contoh berikut. Tentukan daerah penyelesaian dari pertidaksamaan berikut. x – 3y ≤ 3 x + y ≤ 3 Pembahasan Langkah pertama, tentukan dahulu titik potong setiap pertidaksamaan. Lalu, substitusikan setiap titik potong ke dalam koordinat Cartesius. Titik potong x – 3y ≤ 3 xyKoordinat0-10, -1303, 0 Titik potong x + y ≤ 3 xyKoordinat030, 3303, 0 Lalu, substitusikan ke dalam koordinat Cartesius seperti berikut. Garis x – 3y = 3 Garis x + y = 3 Langkah kedua, yaitu melakukan pengujian salah satu titik di luar garis. Untuk memudahkanmu, ambillah titik 0, 0, sehingga diperoleh Daerah penyelesaian x – 3y ≤ 3 Daerah penyelesaian x + y ≤ 3 Jika kedua garis digabung, akan diperoleh daerah penyelesaian tunggal seperti berikut. Jadi, daerah penyelesaiannya di bawah garis x – 3y = 3 dan di atas garis x + y = 3. Penerapan Pertidaksamaan Linear Dua Variabel dalam Kehidupan Berikut ini merupakan penerapan sistem pertidaksamaan linear dua variabel dalam kehidupan sehari-hari. Menentukan estimasi pengolahan bahan produksi. Menentukan estimasi keuntungan maksimum dari penjualan beberapa produk. Menentukan pengeluaran minimum dari pembelian satu barang atau jasa. Menentukan panjang maksimum kayu untuk membuat meja. Menentukan kisaran harga pembelian barang dan jasa yang tidak diketahui harga setiap barangnya. Selain empat contoh di atas, masih ada contoh-contoh lainnya lho. Coba deh sebutin lainnya! Contoh Soal Pertidaksamaan Linear Dua Variabel Untuk mengasah kemampuanmu, yuk simak beberapa contoh soal berikut. Contoh Soal 1 Abel sedang berada di acara festival makanan. Di acara tersebut, ia membeli dua jenis makanan favoritnya, yaitu takoyaki dan sate cumi. Harga setiap makanannya pun juga terbilang murah. Total harga yang harus dibayarkan Abel untuk pembelian 6 buah takoyaki dan 3 tusuk sate cumi masih di bawah Tentukan daerah penyelesaian yang menunjukkan kemungkinan harga makanan Abel! Pembahasan Mula-mula, kamu harus memisalkan takoyaki dan sate cumi dengan variabel tertentu. Misal, sebuah takoyaki = x dan satu tusuk sate cumi = y Selanjutnya, buatlah model matematis dari harga makanan yang dibeli Abel. 6 takoyaki + 3 tusuk sate cumi < 6x + 3y < Setelah mendapatkan bentuk pertidaksamaannya, gunakan langkah-langkah mencari daerah penyelesaian. Langkah pertama, tentukan titik potong terhadap sumbu-x dan sumbu-y. 6x + 3y < 0 Ingat, bahwa harga tidak ada yang bertanda negatif, maka berlaku syarat x ≥ 0 dan y ≥ 0. Langkah kedua, buatlah garis persamaan linearnya. Langkah ketiga, lakukan pengujian titik di luar garis dan diperoleh hasil sebagai berikut. Ingat, bahwa harga tidak ada yang bertanda negatif, sehingga dibatasi oleh garis x ≥ 0 dan y ≥ 0. Oleh karena tanda pertidaksamaannya “<”, maka garisnya putus-putus. Jadi, daerah penyelesaiannya adalah daerah yang diarsir, yaitu di bawah garis putus-putus, di atas garis x = 0, dan di sebelah kanan garis y = 0. Contoh Soal 2 Tentukan daerah penyelesaian untuk pertidaksamaan berikut. 3x – 4y < 12 x + 5y ≤ 5 x ≤ 2 Pembahasan Langkah pertama, tentukan semua titik potong terhadap sumbu-x dan sumbu-y. Titik potong 3x – 4y < 12 xyKoordinat0-30, -3404, 0 Titik potong x + 5y ≤ 5 xyKoordinat010, 1505, 0 Lalu, substitusikan ke dalam koordinat Cartesius seperti berikut. Garis 3x – 4y = 12 Garis x + 5y = 5 Garis x = 2 Lakukan pengecekan sifat daerah penyelesaian dengan titik uji 0, 0. Dari pengecekan titik uji, diperoleh hasil sebagai berikut. Daerah penyelesaian 3x – 4y < 12 Daerah penyelesaian x + 5y ≤ 5 Daerah penyelesaian x ≤ 2 Jika digabungkan, diperoleh daerah penyelesaian tunggal seperti berikut. Itulah pembahasan Quipper Blog kali ini. Semoga bisa bermanfaat, ya. Untuk mendapatkan materi lengkapnya, yuk buruan gabung Quipper Video. Salam Quipper! Gambar daerah layak memuat himpunan penyelesaian yang memenuhi suatu pertidaksamaan linear. Biasanya, gambar daerah layak sering dijumpai pada masalah atau bahasan program linear. Sistem pertidaksamaan yang membatasi gambar daerah layak adalah merupakan fungsi kendala pada masalah program linear. Cara membuat gambar daerah layak sebagai himpunan penyelesaian pertidaksamaan linear dapat dilakukan dengan menentukan batas wilayah dan menguji daerah. Bagaimana cara membuat gambar daerah layak? Bagaimana cara menentukan daerah layak yang dibatasi oleh suatu sistem pertidaksamaan linear? Sobat idschool dapat mencari tahu jawabannya melalui ulasan di bawah. Table of Contents Bentuk Gambar Daerah Layak Cara Menentukan Gambar Daerah Layak Contoh Soal dan Pembahasan Contoh 1 – Cara Menentukan Gambar Daerah Layak yang Sesuai dengan Sistem Pertidaksamaan Contoh 2 – Cara Menentukan Gambar Daerah Layak yang Sesuai dengan Sistem Pertidaksamaan Contoh 3 – Menentukan Gambar Daerah Layak yang Sesuai dengan Sistem Pertidaksamaan Contoh 4 – Menentukan Gambar Daerah Layak yang Sesuai dengan Sistem Pertidaksamaan Daerah layak biasanya digambarkan melalui bagian wilayah yang diarsir. Untuk mendapatkan gambar daerah layak, sobat idschool perlu menggambarkan batas-batas garisnya terlebih dahulu. Setelah mendapatkan kedua garis tersebut selanjutnya sobat idschool akan mendapatkan daerah yang terbagi oleh garis. Daerah yang terbagi oleh garis dapat menjadi daerah penyelesaian atau bukan daerah penyelesaian. Sehingga sobat idschool perlu menguji daerah-daerah tersebut dengan mengambil satu titik sampel di setiap daerah yang terbagi oleh garis. Dengan melakukan uji titik ini, sobat idschool dapat mengetahui mana daerah yang merupakan himpunan penyelesaian dan mana daerah yang bukan merupakan himpunan penyelesaian. Cara melakukan uji titik dilakukan dengan susbtitusi nilai variabel x dan y pada pertidaksamaan. Hasil dari perhitungan akan menunjukkan apakah memenuhi atau tidak memenuhi pertidaksamaan. Baca Juga GarisLurus pada Persamaan Linear Cara Menentukan Gambar Daerah Layak Sebagai contoh, perhatikan bagaimana cara menentukan daerah layak dari suatu pertidaksamaan pada penyelesaian soal sederhana berikut. Soal Tentukan daerah layak pada pertidaksamaan x + y ≤ 5!Langkah pertama adalah menggambar garis x + y = 5 kemudian melakukan uji titik pada daerah yang terbagi oleh garis tersebut. Jika terdapat lebih dari satu pertidaksamaan maka daerah layak yang memenuhi adalah daerah yang merupakan irisan dari beberapa pertidaksamaan. Atau dapat dikatakan bahwa daerah layak yang juga dimiliki oleh setiap pertidaksamaan. Baca Juga 3 Langkah dalam Cara Menyelesaikan Permasalahan Program Linear Contoh Soal dan Pembahasan Beberapa contoh soal di bawah dapat sobat idschool gunakan untuk menambah pemahaman bahasan di atas. Setiap contoh soal yang diberikan dilengkapi dengan pembahasannya. Sobat idschool dapat menggunakan pembahasan tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selamat Berlatih! Contoh 1 – Cara Menentukan Gambar Daerah Layak yang Sesuai dengan Sistem Pertidaksamaan Daerah yang diarsir pada gambar di atas adalah daerah penyelesaian dari pertidaksamaan ….A. 6x + y ≤ 12; 5x + 4y ≥ 20; x ≥ 0; y ≥ 0 B. 6x + y ≥ 12; 5x + 4y ≥ 20; x ≥ 0; y ≥ 0 C. 6x + y ≥ 12; 5x + 4y ≤ 20; x ≥ 0; y ≥ 0 D. x + 6y ≤ 12; 4x + 5y ≥ 20; x ≥ 0; y ≥ 0 E. x + 6y ≥ 12; 4x + 5y ≤ 12; x ≥ 0; y ≥ 0 PembahasanLangkah pertama untuk menentukan sistem pertidaksamaan yang sesuai pada gambar daerah layak yang diberikan pada soal adalah mengetahi persamaan garis yang membatasi daerah layak. Dari gambar daerah layak yang diberikan berada pada kuadran pertama, di mana nilai x dan y pada selalui bernilai positif yang dapat dinyatakan dalam x ≥ 0 dan y ≥ 0. Daerah layak yang diberikan dibatasi oleh dua buah garis yang diketahui setiap garis memotong sumbu x dan sumbu persamaan garis yang melalui titik 0, 5 dan 4,0 Karena daerah layak berada di atas garis 5x + 4y = 20 maka pertidaksamaan pertama adalah 5x + 4y ≥ persamaan garis yang melalui titik 0, 12 dan 2, 0 Karena daerah layak berada di atas garis 6x + y = 12 maka pertidaksamaan pertama adalah 6x + y ≤ 12. Jadi, daerah yang diarsir pada gambar di atas adalah daerah penyelesaian dari pertidaksamaan adalah 6x + y ≤ 12; 5x + 4y ≥ 20; x ≥ 20; y ≥ A Baca Juga Operasi Hitung Bilangan Berpangkat Pecahan Contoh 2 – Cara Menentukan Gambar Daerah Layak yang Sesuai dengan Sistem Pertidaksamaan PembahasanLangkah pertama adalah menentukan batas daerah layak dari dua pertidaksamaan yang diberikan yaitu 3x + 4y ≤ 96 dan x + y ≤ 30. Caranya adalah dengan mengambil harga nol dari kedua pertidaksamaan tersebut sehingga diperoleh dua persamaan linear. Dari sertiap persamaan linear dapat dibuat sebuah garis lurus yang akan membagi daerah menjadi bagai atas/bawah atau kanan/kiri. Lakukan uji titik di setiap daerah yang dipisahkan sehingga dapat diketahui mana daerah yang menjadi himpunan penyelesaian. Syarat x ≥ 0 dan y ≥ 0 menunjukkan bahwa daerah penyelesaian berada di kuadran pertama, sehingga hanya perlu fokus pada bagian tersebut. Proses pengerjaannya dilakukan seperti pada cara berikut. Himpunan penyelesaian untuk sistem pertidaksamaan 3x + 4y ≤ 96; x + y ≤ 30; x ≥ 0; y ≥ 0 merupakan irisan dari keempat himpunan penyelesaian keempat pertidaksamaan. Sehingga, irisan atau himpunan penyelesaian dari sistem pertidaksamaan menghasilkan gambar daerah daerah layak seperti berikut. Jadi, daerah yang memenuhi sistem pertidaksamaan linear 3x + 4y ≤ 96; x + y ≤ 30; x ≥ 0; y ≥ 0 adalah D Contoh 3 – Menentukan Gambar Daerah Layak yang Sesuai dengan Sistem Pertidaksamaan Daerah berarsir yang menunjukkan himpunan penyelesaian dari sistem pertidaksamaan 3x + 5y ≥ 15; 2x + 5y ≥ 10; x ≥ 0; dan y ≥ 0 adalah .… PembahasanCara mendapatkan gambar yang sesuai dengan daerah layak dilakukan dengan menggambar garis lurus yang sesuai pada sistem pertidaksamaan. Selanjutnya adalah menentukan daerah layak yang sesuai dengan sitem pertidaksamaan dengan melakukan uji titik. Pada sistem pertidaksamaan yang diberikan terdapat pertidaksamaan x ≥ 0 dan y ≥ 0 yang menunjukkan bahwa daerah layak berada di kuadran pertama. Sehingga sobat idschool hanya perlu memperhatikan daerah pada kuadran pertama. Cara menentukan daerah yang layak sesuai dengan pertidaksamaan 3x + 5y ≥ 15; 2x + 5y ≥ 10; x ≥ 0; dan y ≥ 0 diberikan seperti pada penyelesaian di bawah. Daerah layak yang memenuhi pertidaksamaan 3x + 5y ≥ 15 Daerah layak yang memenuhi pertidaksamaan 2x + 5y ≥ 10 Gabungan dari hasil dua himpunan penyelesaian sesuai dengan irisan himpunan penyelesaian seperti pada gambar daerah layak berikut. Jadi, daerah berarsir yang menunjukkan himpunan penyelesaian dari sistem pertidaksamaan 3x + 5y ≥ 15; 2x + 5y ≥ 10; x ≥ 0; dan y ≥ 0 terdapat di gambar daerah layak pada pilihan E Contoh 4 – Menentukan Gambar Daerah Layak yang Sesuai dengan Sistem Pertidaksamaan Sistem pertidaksamaan linear yang sesuai dengan daerah penyelesaian diarsir adalah ….A. 3x + 5y ≤ 15, 4x + 7y ≥ 28, x ≥ 0, y ≥ 0B. 3x + 5y ≥ 15, 4x + 7y ≤ 28, x ≥ 0, y ≥ 0C. 5x + 3y ≥ 15, 4x + 7y ≥ 28, x ≥ 0, y ≥ 0D. 5x + 3y ≤ 15, 4x + 7y ≤ 28, x ≥ 0, y ≥ 0E. 5x + 3y ≤ 15, 4x + 7y ≥ 28, x ≥ 0, y ≥ 0 PembahasanLangkah pertama adalah menentukan persamaan garis yang menjadi pembatas dari daerah layak yang diberikan. Dearah layak yang diberikan pada soal berada di kuadran pertama yang artinya nilai x dan y selalu bernilai positif sehingga dapat diperoleh dua pertidaksamaan x ≥ 0 dan y ≥ 0. Selanjutnya ada dua buah garis yang membatasi daerah layak. Sebuah garis melalui titik 3, 0 dan 0, 5, sedangkan garis lainnya melalui titik 7, 0 dan 0, 4. Cara menentukan persamaan garis dan sistem pertidaksamaan yang sesuai dengan gambar daerah layak yang diberikan pada soal diselesaikan seperti pada penyelesaian berikut. Jadi, sistem pertidaksamaan linear yang sesuai dengan daerah penyelesaian diarsir adalah 5x + 3y ≤ 15, 4x + 7y ≥ 28, x ≥ 0, y ≥ E Demikianlah tadi ulasan cara menentukan sistem pertidaksamaan yang memenuhi daerah layak. Terima kasih sudah mengunjungi idschooldotnet, semoga bermanfaat! Baca Juga Himpunan Penyelesaian pada Pertidaksamaan Logaritma Kelas 11 SMAProgram LinearPertidaksamaan Linear Dua VariabelPertidaksamaan Linear Dua VariabelProgram LinearALJABARMatematikaRekomendasi video solusi lainnya0317Bu Ayu membuat dua jenis kue, yaitu bolu dan cubit. Dalam...0252Seorang pedagang membeli sepatu tidak dari 25 pasang untu...0238Himpunan penyelesaian sistem pertidaksamaan 5x+3y>=15, 3...0223Gambarlah himpunan penyelesaian pertidaksamaan bidang Car...Teks videodisini kita pengen soal tentang program linier kita diminta untuk menentukan bentuk dari daerah penyelesaian sistem pertidaksamaan langkahnya adalah kita tulis dulu pertidaksamaan yang ada yang pertama adalah x lebih dari sama dengan 2 ini tidak perlu diplot karena mudah Y kurang dari = 8 dan X min Y kurang dari sama dengan 2 ini pertidaksamaan 1/2 dan yang ini ketiga untuk pertidaksamaan yang ketiga kita upload dulu X dan Y pada sumbu-x dan sumbu-y caranya adalah kita anggap ini suatu persamaan lalu kita buat tabel seperti ini x y jika x 60 berarti Min y akan = 2 artinya = min 2 dan jika 0 x kurang 0 = 2 maka x = 2 kemudian batik dari sini kita punya dua titik yaitu titik nol koma min dua dan titik 2,0 sekarang kita upload padaDina kartesius untuk pertidaksamaan yang pertama yaitu X lebih dari = b = 2 I nym udah berarti garisnya akan sejajar dengan sumbu y dan memotong x = 2 kira-kira seperti itu lalu karena dia hanya satu variabel dan dikatakan X lebih dari = berarti daerahnya adalah di kanan garis karena ini mudah ya Kalau lebih dari batik anaknya karena cuma satu variabel Kemudian untuk pertidaksamaan yang ke 2 Y kurang dari sama dengan 8 berarti garisnya akan sejajar dengan sumbu x dan memotong di Y = 8 karena hanya satu variabel dan pada y kemudian dikatakan kurang dari sama dengan 8 berarti ke bawah ini juga mudah ya keren di bawah pasti kurang dari sama dengan 8 Kemudian untuk yang terakhir kitab la titiknya kita punya titik nol koma min dua berarti di sini dan titikWi-fi di sini kemudian kita hubungkan berarti seperti itu kemudian kita ambil titik uji misalkan yang mudah adalah titik 0,0 kita unci titik 0,0 ke sini kita lihat bahwa 0 dikurang 0 Halo tanda pertidaksamaan x kurang dari sama dengan 2. Pernyataan ini kan benar sehingga titik 0,0 masuk ke penyelesaian garis orange berarti kita arsir yang ada 0,0 nya itu kita pernah in sehingga daerah penyelesaiannya adalah daerah yang paling baik ditunjuk panah yaitu yang ini kalau kita lihat segitiga ini akan siku-siku di sini karena sudah pasti ya karena si x sama X lebih dari sama dengan 2 itu sejajar sumbu y dan Y kurang dari = 8 sejajar sumbu x maka mereka pasti siku-siku Kemudian untuk mengetahui sama kakitidak kita harus tahu dulu titik potongnya kita lihat titik potong di sini ini banyak titik potong antara garis y = 8 dan persamaan yang X min Y = 2 jadi kalau kita subtitusikan X dikurang 8 = 2 sehingga x = 10 berarti titik potongnya adalah di 10,8 itu adalah titik potongnya maka kita bisa lihat ini Kan bertempat di 10 kemudian tinggi segitiganya adalah dari 8 sampai ke sumbu x itu 8 satuan sedangkan alasnya dari X = 2 sampai x = 10 yaitu 8 juga maka dapat disimpulkan bahwa segitiga siku-siku sama kaki 3 jawabannya adalah yang sampai jumpa pada pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul PembahasanBerikut adalah daerah penyelesian dari sistem pertidaksamaan linear 2 variabel di atas. Perhatikan segitiga yang terbentuk yaitu segitiga ABC dan segitiga ABD. Untuk mencari luas daerah penyelesaian, kita dapat melakukan operasi pengurangan luas segitiga ABC terhadap segitiga ABD yaitu Jadi, luas daerah sistem pertidaksamaanlinear 2 variabel tersebut adalah 6 satuan luas. Oleh karena itu, jawaban yang benar adalah adalah daerah penyelesian dari sistem pertidaksamaan linear 2 variabel di atas. Perhatikan segitiga yang terbentuk yaitu segitiga ABC dan segitiga ABD. Untuk mencari luas daerah penyelesaian, kita dapat melakukan operasi pengurangan luas segitiga ABC terhadap segitiga ABD yaitu Jadi, luas daerah sistem pertidaksamaan linear 2 variabel tersebut adalah 6 satuan luas. Oleh karena itu, jawaban yang benar adalah A.

daerah yang memenuhi sistem pertidaksamaan linear